The cellular environment stabilizes adenine riboswitch RNA structure.

نویسندگان

  • Jillian Tyrrell
  • Jennifer L McGinnis
  • Kevin M Weeks
  • Gary J Pielak
چکیده

There are large differences between the intracellular environment and the conditions widely used to study RNA structure and function in vitro. To assess the effects of the crowded cellular environment on RNA, we examined the structure and ligand binding function of the adenine riboswitch aptamer domain in healthy, growing Escherichia coli cells at single-nucleotide resolution on the minute time scale using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension). The ligand-bound aptamer structure is essentially the same in cells and in buffer at 1 mM Mg(2+), the approximate Mg(2+) concentration we measured in cells. In contrast, the in-cell conformation of the ligand-free aptamer is much more similar to the fully folded ligand-bound state. Even adding high Mg(2+) concentrations to the buffer used for in vitro analyses did not yield the conformation observed for the free aptamer in cells. The cellular environment thus stabilizes the aptamer significantly more than does Mg(2+) alone. Our results show that the intracellular environment has a large effect on RNA structure that ultimately favors highly organized conformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis.

RNase P from Bacillus subtilis cleaves in vitro the adenine riboswitch upstream of pbuE, which codes for an adenine efflux pump. The guanine riboswitch, encoded upstream of xpt-pbuX operon, is not cleaved. The cleavage sites do not occur at any predicted structures that should be recognized by RNase P in the theoretical model of the adenine riboswitch. However, it is possible to draw alternativ...

متن کامل

Relative stability of helices determines the folding landscape of adenine riboswitch aptamers.

Riboswitches, whose folding is controlled by binding of metabolites to the aptamer domain, regulate downstream gene expression. Folding properties of the aptamer strongly influence the conformation of the downstream expression platform, which controls transcription termination or translation initiation. We have characterized the energy landscape of the add riboswitch aptamer quantitatively by u...

متن کامل

Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain

Divalent cations are important in the folding and stabilization of complex RNA structures. The adenine-sensing riboswitch controls the expression of mRNAs for proteins involved in purine metabolism by directly sensing intracellular adenine levels. Adenine binds with high affinity and specificity to the ligand binding or aptamer domain of the adenine-sensing riboswitch. The X-ray structure of th...

متن کامل

Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch.

Riboswitches are RNA-based genetic control elements that function via a conformational transition mechanism when a specific target molecule binds to its binding pocket. To facilitate an atomic detail interpretation of experimental investigations on the role of the adenine ligand on the conformational properties and kinetics of folding of the add adenine riboswitch, we performed molecular dynami...

متن کامل

An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs.

Riboswitches are highly structured RNA elements that control the expression of many bacterial genes by binding directly to small metabolite molecules with high specificity and affinity. In Bacillus subtilis, two classes of riboswitches have been described that discriminate between guanine and adenine despite an extremely high degree of homology both in their primary and secondary structure. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 52 48  شماره 

صفحات  -

تاریخ انتشار 2013